2017年论文

您所在的位置:首页  科研  论文  2017年论文

2017年实验室署名论文

  1. Ren, Yibin; Lin, Hezi; Dong, Yuxin. Rigidity theorems for complete Sasakian manifolds with constant pseudo-Hermitian scalar curvature. J. Geom. Anal. 27 (2017), no. 4, 2788–2816.

  2. Chong, Tian; Dong, Yuxin; Ren, Yibin. Liouville-type theorems for CC-harmonic maps from Riemannian manifolds to pseudo-Hermitian manifolds. Ann. Global Anal. Geom. 52 (2017), no. 1, 25–44.

  3. Dong, Yuxin; Ou, Ye-Lin. Biharmonic submanifolds of pseudo-Riemannian manifolds. J. Geom. Phys. 112 (2017), 252–262.

  4. Xu, Jian; Fan, Engui. The GLM representation of the global relation for the two-component nonlinear Schrödinger equation on the interval. J. Math. Phys. 58 (2017), no. 2, 023509, 14 pp.

  5. Chen, Yang; Fan, Engui; Yuen, Manwai. Explicitly self-similar solutions for the Euler/Navier-Stokes-Korteweg equations in RN. Appl. Math. Lett. 67 (2017), 46–52.

  6. Chow, KwokWing; Fan, EnGui; Yuen, ManWai. The analytical solutions for the N-dimensional damped compressible Euler equations. Stud. Appl. Math. 138 (2017), no. 3, 294–316.

  7. Hou, Yu; Fan, Engui; Qiao, Zhijun. The algebro-geometric solutions for the Fokas-Olver-Rosenau-Qiao (FORQ) hierarchy. J. Geom. Phys. 117 (2017), 105–133.

  8. Hua, Bobo; Lin, Yong. Stochastic completeness for graphs with curvature dimension conditions. Adv. Math. 306 (2017), 279–302.

  9. Bauer, Frank; Hua, Bobo; Yau, Shing-Tung. Sharp Davies-Gaffney-Grigor'yan lemma on graphs. Math. Ann. 368 (2017), no. 3-4, 1429–1437.

  10. Hua, Bobo; Liu, Shiping; Xia, Chao Liouville theorems for f-harmonic maps into Hadamard spaces. Pacific J. Math. 290 (2017), no. 2, 381–402.

  11. Hua, Bobo; Huang, Yan; Wang, Zuoqin. First eigenvalue estimates of Dirichlet-to-Neumann operators on graphs. Calc. Var. Partial Differential Equations 56 (2017), no. 6, Art. 178, 21 pp.

  12. Gu, Qilong; Leugering, Günter; Li, Tatsien. Exact boundary controllability on a tree-like network of nonlinear planar Timoshenko beams. Chin. Ann. Math. Ser. B 38 (2017), no. 3, 711–740.

  13. Li, Tatsien; Rao, Bopeng Exact boundary controllability for a coupled system of wave equations with Neumann boundary controls. Chin. Ann. Math. Ser. B 38 (2017), no. 2, 473–488.

  14.  Wang, Yue; Leugering, Günter; Li, Tatsien. Exact boundary controllability for 1-D quasilinear wave equations with dynamical boundary conditions. Math. Methods Appl. Sci. 40 (2017), no. 10, 3808–3820.

  15. Wang, Zhiguo; Liang, Zhenguo. Reducibility of 1D quantum harmonic oscillator perturbed by a quasiperiodic potential with logarithmic decay. Nonlinearity 30 (2017), no. 4, 1405–1448.

  16. Li, Pan; Lin, Wei; Efstathiou, Konstantinos, Isochronous dynamics in pulse coupled oscillator networks with delay, CHAOS, 27(2017), no. 5.

  17. Lan, Kunquan; Lin, Wei. Population models with quasi-constant-yield harvest rates, Mathematical Biosciences and Engineering, 14(2017), no. 2, 467-490.

  18. Guo, Yao; Lin, Wei; Chen, Yuming; Wu, Jianhong. Instability in time-delayed switched systems induced by fast and random switching. J. Differential Equations 263 (2017), no. 2, 880–909.

  19. Chen, HS; Zhao, XY; Liu, F; Xu, SH; Lu, WL. Optimizing interconnections to maximize the spectral radius of interdependent networks, Physical Review E, 95(2017), no. 3.

  20. Falbel, Elisha; Wang, Qingxue. Duality and invariants of representations of fundamental groups of 3-manifolds into ${\rm PGL} (3, \Bbb C) $. J. Lond. Math. Soc. (2) 95 (2017), no. 1, 1–22.

  21. Zheng, Bing; Meng, Lingsheng; Wei, Yimin. Condition numbers of the multidimensional total least squares problem. SIAM J. Matrix Anal. Appl. 38 (2017), no. 3, 924–948.

  22. Li, Chan; Xiao, Ti-Jun. Asymptotics for wave equations with Wentzell boundary conditions and boundary damping. Semigroup Forum 94 (2017), no. 3, 520–531.

  23. Wu, Jun; Xie, Jian-Sheng. Range-renewal structure in continued fractions. Ergodic Theory Dynam. Systems 37 (2017), no. 4, 1323–1344.

  24. Peng, Weimin; Zhou, Yi. Global well-posedness of incompressible Navier-Stokes equations with two slow variables. Chin. Ann. Math. Ser. B 38 (2017), no. 3, 787–794.