

Tight Upper Bound on the Clique Size in the Square of 2-degenerate Graphs

Seog-Jin Kim Konkuk University, Korea

Time: Apr 4th, 16:00 - 17:00 Venue: Room 106, SCMS

Abstract:

The *square* of a graph *G*, denoted G^2 , has the same vertex set as *G* and has an edge between two vertices if the distance between them in *G* is at most 2. In general, $\Delta(G) + 1 \leq \chi(G^2) \leq \Delta(G)^2 + 1$ for every graph *G*. Charpentier(2014) asked whether $\chi(G^2) \leq 2\Delta(G)$ if mad(G) < 4. But Hocquard, Kim, and Pierron (2019) answered his question negatively. For every even value of $\Delta(G)$, they constructed a 2-degenerate graph *G* such that $\omega(G^2) = \frac{5}{2}\Delta(G)$. Note that if *G* is a 2-degenerate graph, then mad(G) < 4. Thus, we have that

 $\frac{5}{2}\Delta(G) \le \max\{\chi(G^2) : G \text{ is a 2-degenerate graph}\} \le 3\Delta(G) + 1.$

So, it was naturally asked whether there exists a constant D_0 such that $\chi(G^2) \leq \frac{5}{2}\Delta(G)$ if *G* is a 2-degenerate graph with $\Delta(G) \geq D_0$. Recently Cranston and Yu (2024) showed that $\omega(G^2) \leq \frac{5}{2}\Delta(G) + 72$ if *G* is a 2-degenerate graph, and $\omega(G^2) \leq \frac{5}{2}\Delta(G) + 60$ if *G* is a 2-degenerate graph with $\Delta(G) \geq 1729$. We show that there exists a constant D_0 such that $\omega(G^2) \leq \frac{5}{2}\Delta(G)$ if *G* is a 2-degenerate graph with $\Delta(G) \geq 1729$. We show that there exists a constant D_0 such that $\omega(G^2) \leq \frac{5}{2}\Delta(G)$ if *G* is a 2-degenerate graph with $\Delta(G) \geq D_0$. This upper bound on $\omega(G^2)$ is tight. This is joint work with Xiaopan Lian (Nankai University).